Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Front Immunol ; 11: 598402, 2020.
Article in English | MEDLINE | ID: covidwho-1045523

ABSTRACT

COVID-19 disease caused by the SARS-CoV-2 virus is characterized by dysregulation of effector T cells and accumulation of exhausted T cells. T cell responses to viruses can be corrected by adoptive cellular therapy using donor-derived virus-specific T cells. One approach is the establishment of banks of HLA-typed virus-specific T cells for rapid deployment to patients. Here we show that SARS-CoV-2-exposed blood donations contain CD4 and CD8 memory T cells which recognize SARS-CoV-2 spike, nucleocapsid and membrane antigens. Peptides of these antigens can be used to isolate virus-specific T cells in a GMP-compliant process. The isolated T cells can be rapidly expanded using GMP-compliant reagents for use as an allogeneic therapy. Memory and effector phenotypes are present in the selected virus-specific T cells, but our method rapidly expands the desirable central memory phenotype. A manufacturing yield ranging from 1010 to 1011 T cells can be obtained within 21 days culture. Thus, multiple therapeutic doses of virus-specific T cells can be rapidly generated from convalescent donors for potential treatment of COVID-19 patients.


Subject(s)
Allogeneic Cells/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Blood Donors , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunologic Memory/immunology , Immunotherapy, Adoptive , Lymphocyte Activation/immunology , Membrane Proteins/immunology , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology
2.
J Transl Med ; 18(1): 359, 2020 09 21.
Article in English | MEDLINE | ID: covidwho-781480

ABSTRACT

More than seven months into the coronavirus disease -19 (COVID-19) pandemic, infection from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 21.2 million cases and resulted in over 760,000 deaths worldwide so far. As a result, COVID-19 has changed all our lives as we battle to curtail the spread of the infection in the absence of specific therapies against coronaviruses and in anticipation of a proven safe and efficacious vaccine. Common with previous outbreaks of coronavirus infections, SARS and Middle East respiratory syndrome, COVID-19 can lead to acute respiratory distress syndrome (ARDS) that arises due to an imbalanced immune response. While several repurposed antiviral and host-response drugs are under examination as potential treatments, other novel therapeutics are also being explored to alleviate the effects on critically ill patients. The use of mesenchymal stromal cells (MSCs) for COVID-19 has become an attractive avenue down which almost 70 different clinical trial teams have ventured. Successfully trialled for the treatment of other conditions such as multiple sclerosis, osteoarthritis and graft versus host disease, MSCs possess both regenerative and immunomodulatory properties, the latter of which can be harnessed to reduce the severity and longevity of ARDS in patients under intensive care due to SARS-CoV-2 infection.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Mesenchymal Stem Cell Transplantation , Pneumonia, Viral/therapy , Animals , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Translational Research, Biomedical , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL